Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 869
Filtrar
1.
Rev Med Inst Mex Seguro Soc ; 61(5): 638-644, 2023 Sep 04.
Artigo em Espanhol | MEDLINE | ID: mdl-37769135

RESUMO

Down syndrome (DS) is the most common autosomal aneuploidy and the leading cause of intellectual disability of genetic origin worldwide. It is identified as a syndrome in which the variability of its clinical manifestations and the severity of its phenotype have a multifactorial origin. Worldwide prevalence ranges between 1 per 700 live births and several factors that may be involved in the origin of DS have been proposed. Our objective was to describe updates regarding risk factors in the cytogenetic origin or cause of DS. We conducted a narrative review study in which a literature search was carried out from January to June 2022 in databases such as PubMed, EBSCO, Medigraphic, ClinicalKey, and meta-search engines such as Elsevier and Evidence Alerts. Only articles published in the last 10 years in English and Spanish were included. The search terms used were: Down syndrome, risk factors, prevention. Although DS is a very common chromosomal pathology worldwide, there is no single risk factor at the origin of meiotic or mitotic nondisjunction of chromosome 21, but rather each of the associated risk factors contributes to a greater or lesser degree to a cytogenetic predisposition in the etiology of trisomy 21. During the review it was identified that the main established risk factor associated with DS is still advanced maternal age (≥ 35 years).


El síndrome de Down (SD) es la aneuploidía de autosomas más frecuente y la primera causa de discapacidad intelectual de origen genético a nivel mundial. Se identifica como una condición de vida en la que la variabilidad de sus manifestaciones clínicas y la gravedad del fenotipo tienen un origen multifactorial. La prevalencia mundial oscila entre 1 por cada 700 nacidos vivos y se han propuesto diversos factores de riesgo que pueden estar implicados en el origen del SD. Nuestro objetivo fue describir las actualizaciones con respecto a los factores de riesgo en el origen o causa citogenética del SD. Se realizó una revisión narrativa en la cual se condujo una búsqueda bibliográfica en el periodo de enero a junio de 2022 en bases de datos como PubMed, EBSCO, Medigraphic, ClinicalKey y metabuscadores como Elsevier y Evidence Alerts. Se incluyeron únicamente artículos publicados en los últimos 10 años en idioma inglés y español. Los términos de búsqueda utilizados fueron: Down syndrome, risk factors, prevention. Aunque el SD es una patología cromosómica muy frecuente a nivel internacional, no existe un factor de riesgo único en el origen de la no disyunción meiótica o mitótica del cromosoma 21, sino que cada uno de los factores de riesgo asociados contribuye en mayor o menor medida a una predisposición citogenética en la etiología de la trisomía 21. Durante la revisión se identificó que el principal factor de riesgo establecido asociado a SD sigue siendo la edad materna avanzada (≥ 35 años).


Assuntos
Síndrome de Down , Adulto , Humanos , Síndrome de Down/complicações , Síndrome de Down/genética , Síndrome de Down/epidemiologia , Idade Materna , Não Disjunção Genética , Fatores de Risco , Feminino
2.
Mol Genet Genomics ; 298(1): 293-313, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36447056

RESUMO

The aim of the present work was to explore the intriguing association of maternal folate regulator gene polymorphisms and mutations with the incidence of chromosome 21 nondisjunction and Down syndrome birth. We tested polymorphisms/mutations of DNMT3B and RFC1 genes for their association with meiotic errors in oocyte among the 1215 Down syndrome child-bearing women and 900 controls. We observed that 23 out of 31 variants of DNMT3B and RFC1 exhibited an association with meiosis II nondisjunction in maternal age-independent manner. Additionally, we have reported 17 novel mutations and 1 novel polymorphic variant that are unique to the Indian Bengali speaking cohort and increased odds in favour of meiosis II nondisjunction. We hypothesize that the risk variants and mutations of DNMT3B and RFC1 genes may cause reduction in two or more recombination events and also cause peri-centromeric single exchange that increases the risk of nondisjunction at any age of women. In silico analyses predicted the probable damages of the transcripts or proteins from the respective genes owing to the said polymorphisms. These findings from the largest population sample tested ever revealed that mutations/polymorphisms of the genes DNMT3B and RFC1 impair recombination that leads to chromosome 21 nondisjunction in the oocyte at meiosis II stage and bring us a significant step closer towards understanding the aetiology of chromosome 21 nondisjunction and birth of a child with Down syndrome to women at any age.


Assuntos
Síndrome de Down , Feminino , Humanos , Síndrome de Down/genética , Síndrome de Down/epidemiologia , Idade Materna , Meiose/genética , Não Disjunção Genética , Oócitos , Polimorfismo Genético
3.
Artigo em Inglês | MEDLINE | ID: mdl-36031329

RESUMO

Although the risk of pregnancy with Down syndrome (DS) increases with age, conceptions with trisomy 21 can occur in mothers aged 35 or less. The micronucleus test on peripheral blood lymphocytes is a well-recognized method for studying chromosomal instability. The aim of this study was to evaluate the application of the micronucleus assay and fluorescence in situ hybridization (FISH) for estimation of chromosome instability and occurrence of trisomy 21 in young parents having pregnancy or a child with the regular form of Down syndrome. The study included 54 parents (27 couples) who had previous pregnancy with trisomy 21 at age 35 or less. The control group consisted of 30 couples with two healthy children and no previous spontaneous abortions. Parents with trisomy 21 pregnancy had significantly higher frequencies of micronuclei in binucleated cells. There was no statistically significant difference between the study and control groups in the frequencies of micronuclei in mononuclear cells, nuclear buds, or nucleoplasmic bridges. FISH analysis showed higher percentages of micronuclei containing whole chromosomes as well as statistically significant higher numbers of micronuclei containing chromosome 21 in the peripheral blood of DS parents. There was no statistically significant difference between the two groups in the responses of peripheral blood lymphocytes to treatment with the mutagen mitomycin C. Our results suggest that young parents with a history of the regular form of Down syndrome have a higher susceptibility to chromosome nondisjunction in peripheral blood lymphocytes. The micronucleus assay showed high specificity, but moderate sensitivity, for risk assessment of trisomy 21 pregnancy.


Assuntos
Síndrome de Down , Instabilidade Cromossômica , Feminino , Humanos , Hibridização in Situ Fluorescente , Linfócitos , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos , Não Disjunção Genética , Gravidez
4.
Genes (Basel) ; 13(5)2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35627159

RESUMO

Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a spindle to segregate the chromosomes. With a variety of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis. This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila oocytes are also a good model for mammalian meiosis because of biological similarities such as long pauses between meiotic stages and the absence of centrosomes during the meiotic divisions.


Assuntos
Drosophila , Meiose , Animais , Segregação de Cromossomos/genética , Cromossomos , Drosophila/genética , Feminino , Masculino , Mamíferos/genética , Meiose/genética , Não Disjunção Genética
5.
Sci Rep ; 11(1): 22390, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789805

RESUMO

Maternal risk factors and their interactions with each other that associate chromosome 21 nondisjunction are intriguing and need incisive study to be resolved. We determined recombination profile of nondisjoined chromosome 21 and maternal genotypes for four selected polymorphic variants from the folate regulators genes stratifying the women according to the origin of segregation error and age at conception. We conducted association study for genotype and maternal addiction to smokeless chewing tobacco, usually chopped tobacco leaves or paste of tobacco leaves with the incidence of Down syndrome birth. Additionally, we designed various logistic regression models to explore the effects of maternal genotype, maternal habit of smokeless chewing tobacco, maternal age at conception and all possible interactions among them on chromosome 21 nondisjunction. We found folate regulator gene mutations are associated with maternal meiosis II error. Regression models revealed smokeless chewing tobacco and folate polymorphic/mutant risk genotype interact with each other to increase the risk of reduced and single peri-centromeric recombination events on chromosome 21 that nondisjoined at meiosis II in the oocytes and the effect is maternal age independent. We inferred maternal folate polymorphic/mutant risk genotypes and habit of smokeless chewing tobacco interact with each other and increase the risk of meiosis II error in oocytes in maternal age-independent manner.


Assuntos
Cromossomos Humanos Par 21 , Suscetibilidade a Doenças , Síndrome de Down/epidemiologia , Síndrome de Down/etiologia , Interação Gene-Ambiente , Não Disjunção Genética , Estudos de Casos e Controles , Síndrome de Down/diagnóstico , Feminino , Frequência do Gene , Genótipo , Humanos , Exposição Materna/efeitos adversos , Modelos Biológicos , Vigilância da População , Gravidez , Recombinação Genética , Fatores de Risco
6.
G3 (Bethesda) ; 11(12)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34550364

RESUMO

Caenorhabditis elegans hermaphrodites first produce a limited number of sperm cells, before their germline switches to oogenesis. Production of progeny then ensues until sperm is depleted. Male production in the self-progeny of hermaphrodites occurs following X-chromosome nondisjunction during gametogenesis, and in the reference strain increases with age of the hermaphrodite parent. To enhance our understanding of the reproductive timecourse in C. elegans, we measured and compared progeny production and male proportion during the early and late reproductive periods of hermaphrodites for 96 wild C. elegans strains. We found that the two traits exhibited natural phenotypic variation with few outliers and a similar reproductive timing pattern as previous reports. Progeny number and male proportion were not correlated in the wild strains, implying that wild strains with a large brood size did not produce males at a higher rate. We also identified loci and candidate genetic variants significantly associated with male-production rate in the late and total reproductive periods. Our results provide an insight into life-history traits in wild C. elegans strains.


Assuntos
Caenorhabditis elegans , Caenorhabditis , Animais , Caenorhabditis/genética , Caenorhabditis elegans/genética , Masculino , Não Disjunção Genética , Oogênese , Reprodução/genética , Cromossomo X/genética
7.
PLoS Genet ; 17(3): e1009462, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33750944

RESUMO

Altered patterns of recombination on 21q have long been associated with the nondisjunction chromosome 21 within oocytes and the increased risk of having a child with Down syndrome. Unfortunately the genetic etiology of these altered patterns of recombination have yet to be elucidated. We for the first time genotyped the gene MCM9, a candidate gene for recombination regulation and DNA repair in mothers with or without children with Down syndrome. In our approach, we identified the location of recombination on the maternal chromosome 21 using short tandem repeat markers, then stratified our population by the origin of meiotic error and age at conception. We observed that twenty-five out of forty-one single nucleotide polymorphic sites within MCM9 exhibited an association with meiosis I error (N = 700), but not with meiosis II error (N = 125). This association was maternal age-independent. Several variants exhibited aprotective association with MI error, some were neutral. Maternal age stratified characterization of cases revealed that MCM9 risk variants were associated with an increased chance of reduced recombination on 21q within oocytes. The spatial distribution of single observed recombination events revealed no significant change in the location of recombination among women harbouring MCM9 risk, protective, or neutral variant. Additionally, we identified a total of six novel polymorphic variants and two novel alleles that were either risk imparting or protective against meiosis I nondisjunction. In silico analyses using five different programs suggest the risk variants either cause a change in protein function or may alter the splicing pattern of transcripts and disrupt the proportion of different isoforms of MCM9 products within oocytes. These observations bring us a significant step closer to understanding the molecular basis of recombination errors in chromosome 21 nondisjunction within oocytes that leads to birth of child with Down syndrome.


Assuntos
Cromossomos Humanos Par 21 , Síndrome de Down/diagnóstico , Síndrome de Down/genética , Proteínas de Manutenção de Minicromossomo/genética , Não Disjunção Genética , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Alelos , Estudos de Casos e Controles , Síndrome de Down/epidemiologia , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Padrões de Herança , Desequilíbrio de Ligação , Razão de Chances , Oócitos , Vigilância da População , Medição de Risco , Fatores de Risco
8.
Prenat Diagn ; 41(5): 591-609, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33596328

RESUMO

OBJECTIVE: In our previous work, we performed the first genome-wide association study to find genetic risk factors for maternal nondisjunction of chromosome 21. The objective of the current work was to perform stratified analyses of the same dataset to further elucidate potential mechanisms of genetic risk factors. METHODS: We focused on loci that were statistically significantly associated with maternal nondisjunction based on this same dataset in our previous study and performed stratified association analyses in seven subgroups defined by age and meiotic recombination profile. In each analysis, we contrasted a different subgroup of mothers with the same set of fathers, the mothers serving as cases (phenotype: meiotic nondisjunction of chromosome 21) and the fathers as controls. RESULTS: Our stratified analyses identified several genes whose patterns of association are consistent with generalized effects across groups, as well as other genes that are consistent with specific effects in certain groups. CONCLUSIONS: While our results are epidemiological in nature and cannot conclusively prove mechanisms, we identified a number of patterns that are consistent with specific mechanisms. In many cases those mechanisms are strongly supported by available literature on the associated genes.


Assuntos
Síndrome de Down/classificação , Idade Materna , Adulto , Síndrome de Down/etiologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Não Disjunção Genética/genética , Não Disjunção Genética/fisiologia , Gravidez , Fatores de Risco
9.
Am J Hum Genet ; 108(1): 16-24, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33306948

RESUMO

Failure of homologous chromosomes to recombine is arguably the most important cause of human meiotic nondisjunction, having been linked to numerous autosomal and sex chromosome trisomies of maternal origin. However, almost all information on these "exchangeless" homologs has come from genetic mapping studies of trisomic conceptuses, so the incidence of this defect and its impact on gametogenesis are not clear. If oocytes containing exchangeless homologs are selected against during meiosis, the incidence may be much higher in developing germ cells than in zygotes. To address this, we initiated studies of exchangeless chromosomes in fetal ovarian samples from elective terminations of pregnancy. In total, we examined more than 7,000 oocytes from 160 tissue samples, scoring for the number of foci per cell of the crossover-associated protein MLH1. We identified a surprisingly high level of recombination failure, with more than 7% of oocytes containing at least one chromosome pair that lacked an MLH1 focus. Detailed analyses indicate striking chromosome-specific differences, with a preponderance of MLH1-less homologs involving chromosomes 21 or 22. Further, the effect was linked to the overall level of recombination in the cell, with the presence of one or two exchangeless chromosomes in a cell associated with a 10%-20% reduction in the total number of crossovers. This suggests individuals with lower rates of meiotic recombination are at an increased risk of producing aneuploid offspring.


Assuntos
Oogênese/genética , Recombinação Genética/genética , Adolescente , Adulto , Aneuploidia , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 22/genética , Feminino , Humanos , Meiose/genética , Proteína 1 Homóloga a MutL/genética , Não Disjunção Genética/genética , Oócitos/fisiologia , Gravidez , Adulto Jovem
10.
Genetics ; 216(3): 621-631, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33158985

RESUMO

The term interchromosomal effect was originally used to describe a change in the distribution of exchange in the presence of an inversion. First characterized in the 1920s by early Drosophila researchers, it has been observed in multiple organisms. Nearly half a century later, the term began to appear in the human genetics literature to describe the hypothesis that parental chromosome differences, such as translocations or inversions, may increase the frequency of meiotic chromosome nondisjunction. Although it remains unclear if chromosome aberrations truly affect the segregation of structurally normal chromosomes in humans, the use of the term interchromosomal effect in this context persists. This article explores the history of the use of the term interchromosomal effect and discusses how chromosomes with structural aberrations are segregated during meiosis.


Assuntos
Não Disjunção Genética , Animais , Inversão Cromossômica , Cromossomos/genética , Drosophila , Humanos , Especificidade da Espécie , Translocação Genética
11.
J Neurogenet ; 34(3-4): 323-334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32648491

RESUMO

Sexual dimorphism is a device that supports genetic diversity while providing selective pressure against speciation. This phenomenon is at the core of sexually reproducing organisms. Caenorhabditis elegans provides a unique experimental system where males exist in a primarily hermaphroditic species. Early works of John Sulston, Robert Horvitz, and John White provided a complete map of the hermaphrodite nervous system, and recently the male nervous system was added. This addition completely realized the vision of C. elegans pioneer Sydney Brenner: a model organism with an entirely mapped nervous system. With this 'connectome' of information available, great strides have been made toward understanding concepts such as how a sex-shared nervous system (in hermaphrodites and males) can give rise to sex-specific functions, how neural plasticity plays a role in developing a dimorphic nervous system, and how a shared nervous system receives and processes external cues in a sexually-dimorphic manner to generate sex-specific behaviors. In C. elegans, the intricacies of male-mating behavior have been crucial for studying the function and circuitry of the male-specific nervous system and used as a model for studying human autosomal dominant polycystic kidney disease (ADPKD). With the emergence of CRISPR, a seemingly limitless tool for generating genomic mutations with pinpoint precision, the C. elegans model system will continue to be a useful instrument for pioneering research in the fields of behavior, reproductive biology, and neurogenetics.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/anatomia & histologia , Proteínas de Ciclo Celular/genética , Organismos Hermafroditas/fisiologia , Sistema Nervoso/anatomia & histologia , Caracteres Sexuais , Estruturas Animais/crescimento & desenvolvimento , Estruturas Animais/inervação , Estruturas Animais/ultraestrutura , Animais , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Cílios/química , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Vesículas Extracelulares/fisiologia , Organismos Hermafroditas/ultraestrutura , Humanos , Interneurônios/fisiologia , Masculino , Sistema Nervoso/crescimento & desenvolvimento , Plasticidade Neuronal , Neurônios/classificação , Neurônios/fisiologia , Neurônios/ultraestrutura , Neurotransmissores/fisiologia , Não Disjunção Genética , Rim Policístico Autossômico Dominante/genética , Comportamento Sexual Animal/fisiologia , Canais de Cátion TRPP/genética , Fatores de Transcrição/fisiologia
12.
Nature ; 583(7815): 259-264, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32494014

RESUMO

Meiosis, although essential for reproduction, is also variable and error-prone: rates of chromosome crossover vary among gametes, between the sexes, and among humans of the same sex, and chromosome missegregation leads to abnormal chromosome numbers (aneuploidy)1-8. To study diverse meiotic outcomes and how they covary across chromosomes, gametes and humans, we developed Sperm-seq, a way of simultaneously analysing the genomes of thousands of individual sperm. Here we analyse the genomes of 31,228 human gametes from 20 sperm donors, identifying 813,122 crossovers and 787 aneuploid chromosomes. Sperm donors had aneuploidy rates ranging from 0.01 to 0.05 aneuploidies per gamete; crossovers partially protected chromosomes from nondisjunction at the meiosis I cell division. Some chromosomes and donors underwent more-frequent nondisjunction during meiosis I, and others showed more meiosis II segregation failures. Sperm genomes also manifested many genomic anomalies that could not be explained by simple nondisjunction. Diverse recombination phenotypes-from crossover rates to crossover location and separation, a measure of crossover interference-covaried strongly across individuals and cells. Our results can be incorporated with earlier observations into a unified model in which a core mechanism, the variable physical compaction of meiotic chromosomes, generates interindividual and cell-to-cell variation in diverse meiotic phenotypes.


Assuntos
Genoma Humano/genética , Meiose/genética , Espermatozoides/citologia , Espermatozoides/metabolismo , Adolescente , Adulto , Alelos , Aneuploidia , Troca Genética/genética , Haplótipos/genética , Humanos , Masculino , Não Disjunção Genética , Análise de Célula Única , Doadores de Tecidos , Adulto Jovem
13.
Open Biol ; 10(5): 190259, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32400307

RESUMO

Topoisomerase IIα (Topo IIα), a well-conserved double-stranded DNA (dsDNA)-specific decatenase, processes dsDNA catenanes resulting from DNA replication during mitosis. Topo IIα defects lead to an accumulation of ultrafine anaphase bridges (UFBs), a type of chromosome non-disjunction. Topo IIα has been reported to resolve DNA anaphase threads, possibly accounting for the increase in UFB frequency upon Topo IIα inhibition. We hypothesized that the excess UFBs might also result, at least in part, from an impairment of the prevention of UFB formation by Topo IIα. We found that Topo IIα inhibition promotes UFB formation without affecting the global disappearance of UFBs during mitosis, but leads to an aberrant UFB resolution generating DNA damage within the next G1. Moreover, we demonstrated that Topo IIα inhibition promotes the formation of two types of UFBs depending on cell cycle phase. Topo IIα inhibition during S-phase compromises complete DNA replication, leading to the formation of UFB-containing unreplicated DNA, whereas Topo IIα inhibition during mitosis impedes DNA decatenation at metaphase-anaphase transition, leading to the formation of UFB-containing DNA catenanes. Thus, Topo IIα activity is essential to prevent UFB formation in a cell-cycle-dependent manner and to promote DNA damage-free resolution of UFBs.


Assuntos
DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Razoxano/farmacologia , Anáfase , Segregação de Cromossomos , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Células HeLa , Humanos , Não Disjunção Genética , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores
14.
Proc Natl Acad Sci U S A ; 117(19): 10455-10464, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350135

RESUMO

Aneuploidy is the leading contributor to pregnancy loss, congenital anomalies, and in vitro fertilization (IVF) failure in humans. Although most aneuploid conceptions are thought to originate from meiotic division errors in the female germline, quantitative studies that link the observed phenotypes to underlying error mechanisms are lacking. In this study, we developed a mathematical modeling framework to quantify the contribution of different mechanisms of erroneous chromosome segregation to the production of aneuploid eggs. Our model considers the probabilities of all possible chromosome gain/loss outcomes that arise from meiotic errors, such as nondisjunction (NDJ) in meiosis I and meiosis II, and premature separation of sister chromatids (PSSC) and reverse segregation (RS) in meiosis I. To understand the contributions of different meiotic errors, we fit our model to aneuploidy data from 11,157 blastocyst-stage embryos. Our best-fitting model captures several known features of female meiosis, for instance, the maternal age effect on PSSC. More importantly, our model reveals previously undescribed patterns, including an increased frequency of meiosis II errors among eggs affected by errors in meiosis I. This observation suggests that the occurrence of NDJ in meiosis II is associated with the ploidy status of an egg. We further demonstrate that the model can be used to identify IVF patients who produce an extreme number of aneuploid embryos. The dynamic nature of our mathematical model makes it a powerful tool both for understanding the relative contributions of mechanisms of chromosome missegregation in human female meiosis and for predicting the outcomes of assisted reproduction.


Assuntos
Aneuploidia , Oócitos/metabolismo , Blastocisto , Deleção Cromossômica , Segregação de Cromossomos , Feminino , Fertilização In Vitro , Humanos , Cariótipo , Idade Materna , Meiose/fisiologia , Modelos Teóricos , Não Disjunção Genética/genética , Não Disjunção Genética/fisiologia , Oócitos/fisiologia , Diagnóstico Pré-Implantação
15.
Chromosoma ; 129(2): 141-160, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314039

RESUMO

The heteropentameric condensin complexes play vital roles in the formation and faithful segregation of mitotic chromosomes in eukaryotes. While the different contributions of the two common condensin complexes, condensin I and condensin II, to chromosome morphology and behavior in mitosis have been thoroughly investigated, much less is known about the specific roles of the two complexes during meiotic divisions. In Drosophila melanogaster, faithful mitotic divisions depend on functional condensin I, but not on condensin II. However, meiotic divisions in Drosophila males require functional condensin II subunits. The role of condensin I during male meiosis in Drosophila has been unresolved. Here, we show that condensin I-specific subunits localize to meiotic chromatin in both meiosis I and II during Drosophila spermatogenesis. Live cell imaging reveals defects during meiotic divisions after RNAi-mediated knockdown of condensin I-specific mRNAs. This phenotype correlates with reduced male fertility and an increase in nondisjunction events both in meiosis I and meiosis II. Consistently, a reduction in male fertility was also observed after proteasome-mediated degradation of the condensin I subunit Barren. Taken together, our results demonstrate an essential role of condensin I during male meiosis in Drosophila melanogaster.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Meiose/fisiologia , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Segregação de Cromossomos , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fertilidade/genética , Imunofluorescência , Edição de Genes , Expressão Gênica , Genes Reporter , Engenharia Genética , Masculino , Complexos Multiproteicos/genética , Não Disjunção Genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteólise , Interferência de RNA
16.
Int J Hyg Environ Health ; 223(1): 207-213, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519426

RESUMO

BACKGROUND: Among live births, Down syndrome (DS) due to trisomy 21 is the most commonly occurring autosomal trisomy, typically resulting from meiotic nondisjunction. Currently, advanced maternal age and altered recombination patterns are the only well-known risk factors for nondisjunction. Maternal occupation has not been investigated as a risk factor for maternally-derived cases of trisomy 21. OBJECTIVES: This study explored the association between maternal occupation and chromosome 21 nondisjunction, stratified by the stage of maternal error - either Meiosis I (MI) or Meiosis II (MII). Additionally, we investigated specific toxic agents associated with occupation classes. METHODS: Using narrative job descriptions from the National Down Syndrome Project (NDSP), a population-based case-control study, occupation was coded using the 2010 Standard Occupational Classification (SOC). Odds ratios were calculated for the association between occupation class and having a child with DS, stratified by meiotic stage. An exposure analysis was performed within occupational classes that were statistically significant predictors of having a child with DS. Odds ratios were calculated to analyze associations between individual exposures and having a child with DS. RESULTS: The odds of MII nondisjunction were increased among Production Workers (OR = 3.15; 95%CI = 1.52,6.55). Women who worked as Life, Physical and Social Scientists or in Food Preparation and Serving-Related Occupations experienced greater likelihood of MI errors (OR = 5.72(1.80,18.20), and OR = 1.87(1.08,3.24), respectively). Exposure to solvents within the Production Worker group was a significant predictor (p < 0.05) for MI nondisjunction. No other environmental agents had a significant association with nondisjunction. DISCUSSION: Specific maternal occupation classes were associated with MI and MII chromosome 21 nondisjunction. These occupation classes were selected for an exposure analysis, which determined solvents as highly predictive of MI nondisjunction among Production Workers. Findings from this analysis will serve to further explore the relationship between maternal occupation and chromosome 21 nondisjunction.


Assuntos
Síndrome de Down/epidemiologia , Exposição Materna/estatística & dados numéricos , Exposição Ocupacional/estatística & dados numéricos , Ocupações/estatística & dados numéricos , Adulto , Estudos de Casos e Controles , Criança , Cromossomos Humanos Par 21 , Família , Feminino , Humanos , Masculino , Idade Materna , Não Disjunção Genética , Fatores de Risco
17.
PLoS Genet ; 15(12): e1008414, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830031

RESUMO

Human nondisjunction errors in oocytes are the leading cause of pregnancy loss, and for pregnancies that continue to term, the leading cause of intellectual disabilities and birth defects. For the first time, we have conducted a candidate gene and genome-wide association study to identify genes associated with maternal nondisjunction of chromosome 21 as a first step to understand predisposing factors. A total of 2,186 study participants were genotyped on the HumanOmniExpressExome-8v1-2 array. These participants included 749 live birth offspring with standard trisomy 21 and 1,437 parents. Genotypes from the parents and child were then used to identify mothers with nondisjunction errors derived in the oocyte and to establish the type of error (meiosis I or meiosis II). We performed a unique set of subgroup comparisons designed to leverage our previous work suggesting that the etiologies of meiosis I and meiosis II nondisjunction differ for trisomy 21. For the candidate gene analysis, we selected genes associated with chromosome dynamics early in meiosis and genes associated with human global recombination counts. Several candidate genes showed strong associations with maternal nondisjunction of chromosome 21, demonstrating that genetic variants associated with normal variation in meiotic processes can be risk factors for nondisjunction. The genome-wide analysis also suggested several new potentially associated loci, although follow-up studies using independent samples are required.


Assuntos
Síndrome de Down/genética , Estudo de Associação Genômica Ampla/métodos , Não Disjunção Genética/genética , Aurora Quinase C/genética , Proteínas de Transporte de Cátions/genética , Criança , Síndrome de Down/etnologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Meiose , Mães , Oócitos , Estados Unidos/etnologia , Fator A de Crescimento do Endotélio Vascular/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-31699346

RESUMO

An aneuploidy workgroup was established as part of the 7th International Workshops on Genotoxicity Testing. The workgroup conducted a review of the scientific literature on the biological mechanisms of aneuploidy in mammalian cells and methods used to detect chemical aneugens. In addition, the current regulatory framework was discussed, with the objective to arrive at consensus statements on the ramifications of exposure to chemical aneugens for human health risk assessment. As part of these efforts, the workgroup explored the use of adverse outcome pathways (AOPs) to document mechanisms of chemically induced aneuploidy in mammalian somatic cells. The group worked on two molecular initiating events (MIEs), tubulin binding and binding to the catalytic domain of aurora kinase B, which result in several adverse outcomes, including aneuploidy. The workgroup agreed that the AOP framework provides a useful approach to link evidence for MIEs with aneuploidy on a cellular level. The evidence linking chemically induced aneuploidy with carcinogenicity and hereditary disease was also reviewed and is presented in two companion papers. In addition, the group came to the consensus that the current regulatory test batteries, while not ideal, are sufficient for the identification of aneugens and human risk assessment. While it is obvious that there are many different MIEs that could lead to the induction of aneuploidy, the most commonly observed mechanisms involving chemical aneugens are related to tubulin binding and, to a lesser extent, inhibition of mitotic kinases. The comprehensive review presented here should help with the identification and risk management of aneugenic agents.


Assuntos
Rotas de Resultados Adversos , Aneuploidia , Doenças Genéticas Inatas/induzido quimicamente , Mitose/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Neoplasias/induzido quimicamente , Animais , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/fisiologia , Carcinógenos/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Segregação de Cromossomos/efeitos dos fármacos , Cromossomos/efeitos dos fármacos , Genes Reporter , Doenças Genéticas Inatas/genética , Células Germinativas/efeitos dos fármacos , Células Germinativas/ultraestrutura , Humanos , Camundongos , Testes para Micronúcleos , Microtúbulos/efeitos dos fármacos , Mitose/fisiologia , Testes de Mutagenicidade/normas , Mutagênicos/análise , Neoplasias/genética , Não Disjunção Genética/efeitos dos fármacos , Gestão de Riscos/legislação & jurisprudência , Moduladores de Tubulina/toxicidade
19.
Science ; 365(6460): 1466-1469, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31604276

RESUMO

Chromosome errors, or aneuploidy, affect an exceptionally high number of human conceptions, causing pregnancy loss and congenital disorders. Here, we have followed chromosome segregation in human oocytes from females aged 9 to 43 years and report that aneuploidy follows a U-curve. Specific segregation error types show different age dependencies, providing a quantitative explanation for the U-curve. Whole-chromosome nondisjunction events are preferentially associated with increased aneuploidy in young girls, whereas centromeric and more extensive cohesion loss limit fertility as women age. Our findings suggest that chromosomal errors originating in oocytes determine the curve of natural fertility in humans.


Assuntos
Envelhecimento , Aneuploidia , Segregação de Cromossomos , Fertilidade , Oócitos/citologia , Adolescente , Adulto , Criança , Feminino , Humanos , Meiose , Não Disjunção Genética , Adulto Jovem
20.
Genes (Basel) ; 10(5)2019 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109140

RESUMO

Intercellular karyotypic variability has been a focus of genetic research for more than 50 years. It has been repeatedly shown that chromosome heterogeneity manifesting as chromosomal mosaicism is associated with a variety of human diseases. Due to the ability of changing dynamically throughout the ontogeny, chromosomal mosaicism may mediate genome/chromosome instability and intercellular diversity in health and disease in a bottleneck fashion. However, the ubiquity of negligibly small populations of cells with abnormal karyotypes results in difficulties of the interpretation and detection, which may be nonetheless solved by post-genomic cytogenomic technologies. In the post-genomic era, it has become possible to uncover molecular and cellular pathways to genome/chromosome instability (chromosomal mosaicism or heterogeneity) using advanced whole-genome scanning technologies and bioinformatic tools. Furthermore, the opportunities to determine the effect of chromosomal abnormalities on the cellular phenotype seem to be useful for uncovering the intrinsic consequences of chromosomal mosaicism. Accordingly, a post-genomic review of chromosomal mosaicism in the ontogenetic and pathogenetic contexts appears to be required. Here, we review chromosomal mosaicism in its widest sense and discuss further directions of cyto(post)genomic research dedicated to chromosomal heterogeneity.


Assuntos
Instabilidade Cromossômica/genética , Instabilidade Genômica/genética , Mosaicismo/embriologia , Aneuploidia , Cromossomos/genética , Diploide , Genoma/genética , Genômica , Humanos , Cariótipo , Cariotipagem/métodos , Não Disjunção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...